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for applications in organic synthesis, solutions are being sought 
to the unfavorable deinsertions of these complexes relative to their 
annulations with acetylenes, and also based on the successful 
stereoselective akylation of the benzyl complex 8, the possibility 
of asymmetric induction in reactions at the carbon-nitrogen bond 
of the imino ligand are being examined. 
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Several solution kinetic studies have suggested that the serine 
protease class of enzymes is subject to reversible inhibition by boric 
acid and boronic acid derivatives.2 X-ray crystallographic studies 
of boronic acids attached to a-chymotrypsin (a-CHT)3 and 
subtilisin4 demonstrated that the boron atom is in a tetrahedral 
environment covalently bonded to the active center serine. Raman 
spectroscopic studies further supported this finding in the solid 
state.5 

We report 11B NMR studies on phenylboronic acid (PBA) in 
the absence and presence of a-CHT at pH 7.2, 22 °C, and our 
ability to deduce the solution structure around the boron atom 
when enzyme-bound. Under conditions of fast exchange of the 
boron nucleus between the bound and free states, both the chemical 
shift and the relaxation rates of the nucleus can be deduced from 
a "titration" of the boron resonance with limiting amounts of 
a-chymotrypsin. For 11B (I, the nuclear spin is 3/2) in the limit 
of extreme narrowing (OJI2TC

2 « I),6 the quadrupole relaxation 
rate (l/Tq) is given by 

* q = \/Tq = (2TT 2 /5)(1 + n2/3)(e2qQ/h)2rc (1) 

where (e2qQ/h) is the quadrupole coupling constant in Hz, TC is 
the correlation time, and -n is the asymmetry parameter—a 
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Figure 1. Dependence of the 11B chemical shift (A) and line width (+) 
on the molar ratio of phenylboronic acid (fixed at 2.9 mM) to a-chy
motrypsin (0.025-0.4 mM, 3X recrystallized from Worthington) at pH 
7.2, 22 0C, in 0.05 M total phosphate buffer. Measurements were per
formed on an IBM WP-200 SY instrument operating at 64.2 MHz for 
11B. Chemical shifts are reported relative to external trimethylborate; 
there is an upfield chemical shift of the "B resonance on addition of 
a-chymotrypsin. The line width was corrected for viscosity induced 
effects by subtraction of the line width of "B in 2.9 mM phenylboronic 
acid but in the presence of the same concentration of diisopropyl-
phosphoryl-a-chymotrypsin as used for native enzyme. 

measure of the deviation of the electric field gradient from axial 
symmetry. 

A comparison of the spin-lattice relaxation time (T1) of 2.9 mM 
PBA (1.28 ms, measured by the inversion-recovery method) to 
the spin-spin relaxation time (T2, 1.30 ms from the line width) 
demonstrates that the condition of extreme narrowing applies,7 

the principal relaxation mechanism is quadrupolar, and the 
contribution of field inhomogeneity to the line width is negligible. 
Addition of small, limiting amounts of a-CHT8 broadened the 
boron resonance and shifted it upfield relative to free PBA. The 
chemical shift of the free PBA is 13.42 ppm relative to external 
B(OMe)3. The "p£a" of PBA is 8.85 for the midpoint of the 
trigonal-to-tetrahedral transition, hence at pH 7.2 there is a large 
preponderance of trigonal species. As a control, diisopropyl-
phosphoryl-a-CHT9 was added to PBA producing smaller 
broadening than did active enzyme and no change in chemical 
shift. This control served to subtract out the effect of viscosity 
induced broadening and the effects, if any, of nonspecific binding. 
The fast exchange condition was confirmed by a study indicating 
that the excess line width, after correction for the line width 
observed in the control, decreases with increasing temperature. 
From the dependence of the chemical shift and line width on 
a-CHT concentration, the chemical shift of the enzyme bound 
11B (-12.9 ± 0.2 ppm) and the A:dissociation [(2.6 ± 0.3) X 10"5 M] 
could be calculated,10 as well as the line width (1932 ± 14 Hz) 
of the resonance of the bound 11B atom (Figure 1). 

In the presence of 2.91 mM PBA and 0.2 mM a-CHT, a 1/T1 

of 2160 s'] and 1/T2 of 6068 s~' were determined for the en
zyme-bound 11B atom, indicating nonextreme narrowing condi
tions.11 The ratio R2ZRx is 2.81 and implies that W1T0 < 1.5, thus 

(7) NMR of Newly Accessible Nuclei; Laszlo, P., Ed.; Academic Press: 
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and AA" is the difference between observed and totally free property. 
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enabling us to calculate TC and (e2qQ/h) from a linear approxi
mation12 as 3.14 X 10"9 s/rad and 0.87 MHz, respectively. A 
Stokes-Einstein-Debye calculation gave a rrotationa| of 1.2 X 10~8 

s/rad for a-CHT.13 Therefore, the boron environment at the 
active center is much more mobile than the gross tumbling rate 
of the enzyme. 

The quadrupolar coupling constant estimated for the active 
center-bound 11B is 0.87 MHz characteristic of a tetrahedral 
boronate,15 as is the bound chemical shift of-12.9 ppm (compared 
to 13.4 for the unbound PBA at this pH).16 Both quantities 
confirm a transition statelike structure in solution. 

This study demonstrates the potential of 11B NMR to study 
the active center of enzymes in solution. 
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The importance of chiral Lewis acid catalysts in organic syn
thesis has been tremendously demonstrated in recent years.1 

However, the asymmetric hetero-Diels-Alder reaction (Danish-
efsky reaction), which is quite useful in natural product syntheses,2 

has never been developed to a useful level due to the lack of the 
well-designed asymmetric catalysts.3 Here we wish to report a 

(1) (a) Morrison, J. D. Asymmetric Synthesis; Academic Press: New 
York, 1984; Vol. 3B. (b) Bosnich, B. Asymmetric Catalysis; Martinus Nijhoff 
Publishers: Dordrecht, 1986. 

(2) (a) Danishefsky, S. Aldrich. Acta 1986, 19, 59. (b) Danishefsky, S.; 
DeNinno, M. P. Angew. Chem., Int. Ed. Engl. 1987, 26, 15. 

(3) Previous attempt on asymmetric hetero-Diels-Alder reactions with a 
chiral catalyst: (a) Bednarski, N.; Maring, C; Danishefsky, S. Tetrahedron 
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first solution to this problem by using the newly devised chiral 
organoaluminum catalyst of type (R)-I and (S)-I.4 

S i A r , SiAr, 

A l - M e A l - M e 

SiAr, 

(S)-I 

The optically pure (i?)-(+)-3,3'-bis(triarylsilyl)binaphthol5 

([R)-I) requisite for preparation of (R)-I can be synthesized in 
two steps from (i?)-(+)-3,3'-dibromobinaphthol.6 Reaction of 
(R)-2 in toluene with Me3Al produced the chiral organoaluminum 
reagent (R)-I as a pink to wine-red solution. Its molecular weight, 
found cryoscopically in benzene, corresponds closely with the value 
calculated for monomeric species of 1 (Ar = Ph). 

Treatment of a mixture of benzaldehyde and siloxydiene 3 in 
toluene under the influence of catalytic (R)-I (Ar = Ph: 10 mol%) 
at -20 0C for 2 h furnished, after exposure of the resulting 
hetero-Diels-Alder adducts to trifluoroacetic acid in CH2Cl2, 
ris-dihydropyrone 4 (77%) and its trans isomer 5 (7%).7 The 

OMe 

Me1SiO 

1) PhCHO 
cat. (R)-1 

=y 

2) CF1COjH 

M Me. 

Me 

4 

Me 

5 

major cis adduct 4 was shown to be 95% ee.8 Further, use of 
sterically more hindered aluminum reagent (R)-I (Ar = 3,5-xylyl) 
has proved to exhibit the excellent cis and enantioselectivity (93% 
yield; cis / t rans = 30:1; 97% ee in 4). 

Some examples are listed in Table I. The present catalytic 
method is applicable to various siloxydienes9 and aldehydes with 
high enantioselectivity. The new chiral organoaluminum reagent 
1 disclosed herein exhibited the following characteristic features. 
(1) The optical yield appeared to be independent of the amount 
(5-100 mol%) of 1 but increased gradually by lowering the re
action temperature (entries 1-3, 7, and 8). (2) Choice of the bulky 
triarylsilyl moiety in 1 is crucial for obtaining the high enantioface 
differentiation of prochiral aldehydes, and switching the triarylsilyl 

(4) For synthetic application of binaphthol or substituted binaphthol-
modified chiral Lewis acids, see: (a) Kelly, T. R.; Whiting, A.; Chandraku-
mar, N. S. J. Am. Chem. Soc. 1986, 108, 3510. (b) Reetz, M. T.; Kyung, 
S.-H.; BoIm, C; Zierke, T. Chem. Ind. 1986, 824. (c) Chapuis, C; Jurczak, 
J. HeIv. Chim. Acta 1987, 70, 436. 

(5) (R)-I (Ar = Ph): [a]D +125° (c 1.10, THF); (5)-2 (Ar = Ph): [a]D 
-125" (c 1.04, THF); (R)-2 (Ar = 3,5-xylyl): [a]D +135° (c 1.02, THF). 

(6) (i?)-(+)-3,3'-Dibromobinaphthol was converted with Ar3SiCl/ 
imidazole in DMF to bis-silyl ether (>95% yield), which on treatment with 
r-BuLi underwent a remarkably smooth 1,3-rearrangement to furnish optically 
pure (R)-2 in 80-95% yield. The details of this process and its application 
to other phenol derivatives will be reported in due course. For preparation 
of the starting dibromobinaphthol, see: Lingenfelter, D. S.; Helgeson, R. C; 
Cram, D. J. / . Org. Chem. 1981, 46, 393. 

(7) A typical experimental procedure is exemplified by the reaction of 
benzaldehyde with the diene 3 (entry 2). To a degassed solution of (R)-
(+)-3,3'-bis(triphenylsilyl)binaphthol (R)-I (Ar = Ph) (88 mg, 0.11 mmol) 
in dry toluene (5 mL) was added a 0.5 M hexane solution of Me3Al (0.2 mL, 
0.1 mmol), and the resulting wine-red solution was stirred at room temperature 
for 1 h. After having been cooled to -20 0C, benzaldehyde (0.102 mL, 1 
mmol) and the diene 3 (220 mg, 1.1 mmol) were added. The mixture was 
stirred at -20 "C for 2 h, poured into 10% HCl, and extracted with ether. The 
combined extracts were concentrated in vacuo to give the crude adducts which 
were redissolved in CH2Cl2 (30 mL) and treated with trifluoroacetic acid 
(0.092 mL, 1.2 mmol) at 0 0C for 1 h. The reaction mixture was then poured 
into saturated NaHCO3, extracted with CH2Cl2, and dried over Na2SO4. 
Evaporation of solvent and column chromatography of the residue on silica 
gel, eluting with 1:3 ether/hexane, gave a mixture of ci's-dihydropyrone 4 (156 
mg, 77%; [a]D +7.1° (c 1.0, CHCl3)) and the trans isomer 5 (14 mg, 7%; [a]D 
-27.3° (c 0.75, CHCl3)). 

(8) The optical purity of the trans adduct 5 was 52% ee. 
(9) The isomeric ratios of the dienes in Table I are as follows: 6 (E/Z = 

84:16); 7 (EjZ= 1:1). 
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